FIRST RESULTS OF A PILOT INSTALLATION OF A SOLAR THERMALLY DRIVEN COLD STORE

Jochen Döll, Hatem Bentaher, Alexander Morgenstern
Fraunhofer Institute for Solar Energy Systems ISE
Australien Solar Cooling 2013 Conference
Sydney, April 12, 2013
www.ise.fraunhofer.de

Agenda

- The project AgroKühl
- Project partners
- Work packages
- The pilot system
- System operation modes
- Results of first measurement period
- Optimisation potential
- Conclusion
The project AgroKühl

Aim:
Development of an integrated solar thermally driven cold storage room for agricultural produce

Background:
- Rising production capacities → More storage capacities needed
- Outdated technology → High energy demand
- Resource scarcity → Increasing energy prices
- Cutting of energy subsidies → Higher operation costs
- Disrupted cold chains → Wastage of produce

Increasing demand of reliable and environmental sound cold storage solutions

Project partners

- Kramer GmbH
 Cold storage rooms & insulation
- Fraunhofer ISE
 Solar technologies, monitoring & control, simulation
- Planungsbüro Nürnberger IG mbH
 System engineering
- Kälte Grohmann GmbH & Co. KG
 Refrigeration engineering
- Katholing Bauplan GmbH
 Civil engineering
Work packages

- Market and demand analysis
- Simulation study
 - Pilot plant
- Optimisation
- Design of target size plant

The pilot system

Basic scheme

- 88 m² collector mirror area*
- 12 kW H₂O/NH₃ chiller
- 52 kWh latent ice storage capacity
- 100 m³ storage depot size

*Collector oversized with respect to the chiller, to allow longer measurement periods under German weather conditions
Day 2 – Solar Cooling Conference - 12/04/2013
Venue: CSIRO, North Ryde, Sydney

Absorption chiller and hydraulics

© Fraunhofer ISE

Cold storage room

© Fraunhofer ISE
Day 2 – Solar Cooling Conference - 12/04/2013
Venue: CSIRO, North Ryde, Sydney
System operation modes

© Fraunhofer ISE
System operation modes

Preheat

- Sun is shining
- Collector target temperature not yet met

Direct cooling

- Collector at target temperature
- Cooling demand exists
System operation modes

Charging ice storage

- Collector at target temperature
- No cooling demand
- Ice storage not yet fully charged

Discharging ice storage

- Insufficient radiation
- Cooling demand exits
- Ice storage not yet fully discharged
System operation modes

Preheat & discharging ice storage

- Collector target temperature not yet met
- Cooling demand exits
- Ice storage not yet fully discharged

Results of first measurement period

Direct cooling

- Power
- el. Efficiency

Day 2 – Solar Cooling Conference - 12/04/2013
Venue: CSIRO, North Ryde, Sydney
Results of first measurement period

Charging ice storage

Discharging ice storage

Temperatures

Power & Flowrate

Day 2 – Solar Cooling Conference - 12/04/2013
Venue: CSIRO, North Ryde, Sydney

© Fraunhofer ISE
Optimisation potential

- Low viscosity heat transfer fluid in LT circuit
 - Decrease of LT-pump electricity consumption
- High efficiency pump in LT circuit
 - Decrease of LT-pump electricity consumption
- Speed controlled fan of cold storage cooling coil
 - Optimisation of heat transfer and electricity consumption during cooling of the room
- Additional ice storage
 - Higher storage capacity and lower pressure drop during charge and discharge

Conclusions and outlook

- First results are promising
- From optimisation an increase of cooling capacity by 20% at the same electrical power consumption is expected
- Together with the aforementioned optimization measures COPs greater than 12 in direct cooling mode seem to be realistic.
- Upcoming summer: Optimisations will be implemented
- Quasi realistic operation with load profiles in fully automatic mode
- Aim: Gather total energy consumption of the storage for comparison with conventional cold storage rooms
Further information

- For additional information about the project visit www.agrokuehl.com (english version coming soon)

Further questions?

Project coordinator
Jochen Döll
Fraunhofer Institut für Solare Energiesysteme
Heidenhofstraße 2
79110 Freiburg
jochen.doell@ise.fraunhofer.de
www.ise.fraunhofer.de

Day 2 – Solar Cooling Conference - 12/04/2013
Venue: CSIRO, North Ryde, Sydney

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE
Alexander Morgenstern
www.ise.fraunhofer.de
Alexander.morgenstern@ise.fraunhofer.de