Learning from the 60L Green Building: good intentions, tough action and their outcomes

Alan Pears AM
Director Sustainable Solutions
Adjunct Professor RMIT University
Melbourne Forum March 28 2012
State Theatre

60L solar and ventilation

Net lettable area: 3216 sqm (increased to 3225 sqm recently), 4 floors
Front part dates back to 1870
Top floor lightweight addition
Daylight is an energy saver and creates a high level of amenity at 60L — and installed lighting power density only 5.5 watts/sqm

High visibility stairs (now carpeted) and lift hidden round corner towards rear means lower lift energy usage
Why differences between design modelling and reality?

- Modelling pre-dates NABERS modelling protocol
- Not all activities included in modelling
- Construction did not match design, eg:
 - Building much leakier than designed
 - Sewage treatment plant issues
 - Internal heat loads?
- Management and occupant behaviour different from design assumptions, eg variable hours, varying comfort
- Real climate differed from modelled climate
- Accuracy of model and assumptions?
- ??

How we tried to ensure performance: construction project

- Extensive design process involving client and independent expertise (eg modelled options, challenged assumptions)
- Client appointed separate project manager and environmental consultants who:
 - reviewed project team’s work,
 - represented client at meetings,
 - approved any changes to specifications,
 - Inspected and recorded on-site work
 - helped project team find products and solve problems and educated many contractors and consultants
- Very thorough documentation of environmental requirements in briefs/specifications
- On-site environmental officer
Other Factors to Ensure Performance

- Thorough green fitout and equipment purchase guidelines for tenants (+ specialist advice)
- Separate metering of tenant lights, power and heating/cooling
- Each tenant manages and pays for its own heating & cooling, power and lighting - 77% of total building energy
- Liaison with tenants on environmental performance
- Enthusiastic building manager, strong green culture
- Many energy saving features: lighting, hot water, PV etc

Missed opportunities and issues (personal opinion):
- We didn’t get ‘domestic’ split systems – ‘commercial’ units less efficient, noisier, didn’t have inverter control (+more expensive)
- Ground floor tenancies/existing building not well insulated
- Potential warm air in atrium to heat ground floor not utilised
- Sewage treatment plant issues

Net energy consumption July 2003-July 2010 247,820 kWh/y, 77.1 kWh/m²/y (PV supplied extra 3.2 kWh/sqm/y)

NOTE: most energy data from Nathan Chapman study as part of his Masters of Sustainable Energy Engineering at RMIT
Annual electricity consumption per square metre (kWh). PV provided 3.2 kWh/sqm. Average net annual usage 77 kWh/sqm (NABERS normalised Vic 5 star is 127 kWh/sqm)

HCP (Hydraulic Control Panel) 2003-2009. When sewage treatment system operating, daily consumption over 60 kWh/day (7 kWh/sqm/y, ~20 kWh/kl) compared with under 10 kWh/day (1 kWh/sqm/y) when rainwater treatment only operating. Sewage treatment plant now decommissioned: very energy-intensive, high maintenance and treated water dumped to sewer as excess.
A ground floor tenancy: 95 kWh/sqm/year (1.83 kWh/sqm/week), dominated by power (47%) winter heating (37% over year)
Average electricity/sqm ~60% above tenant average, with heating much above average but still cool in winter

AAA 3/6 litre toilets using reclaimed water

Waterless urinals
Two 10,000 L tanks fed by approx 1,000 sqm of roof. Water is filtered, sterilised and pumped to points of use. Daily energy approx 10 kWh – much lower than original design: • Low pressure drop filters and sensor controlled circulation pumps

Unfortunately, we didn't catch the pipe installation: right-angle bends waste energy!!!
Estimated mains water consumption (kilolitres) in an average rainfall year

Mains water usage consistently below predicted (ave 460 kL/y c/f 541 kL/y) except sewage treatment plant. Ave usage approx 0.4 litres/m²/day during extended drought (ave rainfall 500 mm c/f long term average of 650 mm for Melbourne). Close to self-sufficiency possible without sewage treatment, but possibly more storage needed.

- Overall rated high: “...building was rated ‘Exceptional’ on the seven point scale,96%.All-Factors 83% ... Upper end of the ‘Good Practice’ band.” (p.220)

- Ratings (relative to benchmarks of sample):
 - Lighting 5/5 better, Satisfaction factors 5/5 better
 - Operational 6/8 better 2/8 similar
 - Control 3/5 better, 2/5 similar
 - Environmental: winter 5/8 better, 2/8 similar 1/8 worse
 - Environmental: summer 5/8 better, 1/8 similar 2/8 worse
 - Noise 5/6 similar, 1/6 better (stairs now carpeted)

To conclude: Lessons

- Design and construction:
 - Thorough documentation and strong leadership
 - Independent monitoring and reporting to client
 - Demand accountability and challenge assumptions – maybe also offer incentives for excellent performance
 - Drive extreme energy efficiency including standby and distribution losses - don’t assume ANYTHING: check!

- Ensure tenants install efficient equipment, educate them on behaviour, provide feedback, ongoing engagement

- Monitor, report, manage and improve performance

- Empower building managers, contractors and occupants