Optimising building HVAC services through control

AIRAH Divisional Meeting September 2014

Chris Flanagan
AIRAH Committee President

What's keeping you up at night...?

Owner-occupied

- Occupant complaints and productivity concerns
- Shortage of CapEx
- Increasing energy costs
- Ever stricter environmental rules
- Shortage of trained building engineers
- Difficult to implement improvements across portfolio of different building types and EMS vendors

What's keeping you up at night...?

Commercial Office

- Asset Value
- Tenant complaints
- Increasing energy costs
- Ever stricter environmental rules
- Shortage of trained building engineers
- Difficult to implement improvements across portfolio of different building types and EMS vendors
- Minimal available CapEx
- Churn in portfolio ownership

What's keeping you up at night...?

Education

- Teacher and staff comfort complaints
- Minimal available budget
- Increasing energy costs
- Ever stricter environmental rules
- Building operators often not trained (i.e. janitor, secretary)
- Difficult to implement improvements across campuses of different building types and EMS vendors

The solution: Building Optimization

Advanced, predictive energy management software to optimize and control HVAC operations and reduce energy costs for commercial buildings

How:

- Software continuously monitors weather data, energy prices, and demand response (DR) events
- Makes small changes in HVAC operations that result in large energy savings without impacting comfort

How Building Optimization works

- Full optimization, full savings
 - Using the thermal model, thousands of alternative operating plans are produced for each operating day
 - The plan is selected based on your prioritized objectives: cost, comfort, or consumption, and incorporates information on predicted and actual site conditions including weather, price signals, and demand response signals
 - Monitors and re-optimizes every 10 to 45 minutes thereafter

Service Positioning

Competitive Uniqueness

Commissioning

- ECM Implementation
- Visualization of data
- Single point-in-time commissioning
- Static reports

Manual identification of ECMS

Analytics

- Detection of equipment faults 24/7
- Assess energy, comfort,
 & maintenance impact
- Reports and to-do lists
- ROI to prioritize lists
- Improves efficiency of local staff via tasking

Identifies anomalies to fix

Optimization

- Optimized operation 24/7
- Dynamic
- Adaptive, self-learning
- Grid-aware; an extension of the SmartGrid
- Maximize ROI of the asset & future EE investments
- Improves efficiency of local staff by automating actions

Automated, optimized energy management

Degree of Intelligence

BMS Service

Traditional

service

provider

System optimization model

- Uses real-time weather forecast, tariff, and demand response events
- Leverages knowledge of building's thermal envelope
- Considers energy consumption and protects occupants' comfort
- Changes BMS set points and schedules through an intelligent, comfortoriented supervisory control engine
- Customer can override at any time

Making a good system better

Building Management System

- Initially commissioned to maintain comfort
- Requires continual re-tuning and operating schedule updates
- Focused on set points for temperature, pressure, etc.
- Alarms generated based on noncompliance with set points
- May lack on-site expertise

Optimized for fixed point in time

Building Management System+ Building Optimization

- Learning by listening automatically learns actual building performance
- Continually learns and adapts to changes
- Maintains occupant comfort while reducing energy expense
- Building issues uncovered and diagnosed
- Automated software backed by experts assuring performance; providing guidance, 24/7/365

Continuous, predictive, automatic

Reduce total building energy use by 5-8%, which is up to 25% of HVAC energy

Intelligent automation

Automated HVAC energy optimization and demand response implemented quickly & cost effectively

Centralized expert support

Centralized system monitoring and evaluation to optimize operations

Transparent results

Advanced M&V methods and clarity delivers real-time results you can trust

Increase your building's rating

LEED EB Points

Energy & Atmosphere:

- -Optimize energy performance (5)
- -Existing building commissioning (6)
- -Performance measurement (1)
- -Emissions reduction reporting (1)

Innovation in Operations (2)

Indoor Environmental Quality:

- -AQ best management practice (2)
- -Occupant comfort-thermal comfort monitoring (1)

Regional Priority Credits:

-Specific credit (2)

Up to 20 LEED EB points

Energy Star

Why Building Optimization?

- Reduces total building energy by 5% to 8%
 - 10% to 25% of HVAC energy use
- Control plus reports and graphs
- Positive ROI in months
- Lowers carbon footprint
- Increases value of portfolio
- Smart grid ready
- You don't pay unless there are results!

Case Study – Iconic US Class A Office

"Any reduction in energy must NOT impact tenant comfort or come at the expense of increased attention and efforts from the building engineers." - Customer

THE CHALLENGE

- Automate reduced energy consumption
- One of largest Gold LEED-EB buildings in US
- Top notch in-house engineering staff
- Very risk adverse operations staff

THE RESULT

- Saved over \$1M (€745K) in utility costs in first two years
- Reduced CO₂ footprint by 440 tons
- Saving \$3 (€2.25) in energy for every \$1 (€.75) spent

Case Study – US Electric Utility Customer

A high level of IT security and maintaining occupant comfort with 74°-75° F (23°C-24°C) internal temperature were achieved throughout the optimization and demand response events.

THE CHALLENGE

- Reduce energy consumption and peakpower demand response (DR)
- Office building (270,000 ft²; 25,084m²)
 located in extreme desert climate
- Average high temperature range: 101° to 104° F; 110° F (38°-40° C; 43° C) during the summer

THE RESULT

- Up to 20% daily reduction in total HVAC energy use
- Projected annual energy savings of 449,851 kWh or \$45,000 (€33,790)
- DR savings: 13.7% of chiller load; summertime load shed is expected to reach 12% to 15%

Technical system architecture

Experts monitor/assess HVAC system; provide guidance & additional system tuning; can assist with DR event participation

Building model incorporates utility rates & weather to determine ideal set points, recalculates every 15-60 min.